metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methanoltriphenyl(quinoline-2-carboxylato)tin(IV)

Hongyun Wang,^a Handong Yin^{a*} and Yuying Sun^b

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bAnalytical and Testing Center of Beihua University, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 7 November 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.029; wR factor = 0.098; data-to-parameter ratio = 14.8.

The Sn atom in the title compound, $[Sn(C_6H_5)_3(C_{10}H_6NO_2)-$ (CH₄O)], adopts a distorted SnO₂C₃ trigonal-bipyramidal geometry. The O atom of the carboxylate group occupies one of the axial sites and the O atom of the methanol molecule occupies the other. In the crystal structure, a bifurcated O- $H \cdots (O,N)$ hydrogen bond links adjacent molecules.

Related literature

For related structures, see: Ma et al. (2006).

Experimental

Crystal data

[Sn(C₆H₅)₃(C₁₀H₆NO₂)(CH₄O)] $M_r = 554.19$ Monoclinic, $P2_1/n$ a = 11.1774 (11) Åb = 14.3964 (12) Å c = 16.098 (2) Å $\beta = 93.572 \ (2)^{\circ}$

Data collection

Siemens SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.610,\ T_{\rm max}=0.657$

V = 2585.3 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.02 \text{ mm}^{-1}$ T = 298 (2) K $0.54 \times 0.46 \times 0.45~\text{mm}$

12574 measured reflections 4551 independent reflections 3424 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	307 parameters
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
4551 reflections	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Sn1-C17	2.135 (4)	Sn1-C23	2.145 (4)
Sn1-C11	2.138 (4)	Sn1-O3	2.437 (2)
Sn1-O1	2.145 (3)		
O1-Sn1-O3	173.17 (9)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{matrix} O3-H3\cdots O2^i\\ O3-H3\cdots N1^i \end{matrix}$	0.82	2.44	3.000 (4)	127
	0.82	2.08	2.827 (4)	151

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation, and the State Key Laboratory of Crystalline Materials, Shandong University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2644).

References

- Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713-1721
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany,
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin USA
- Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instrument Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2994 [doi:10.1107/S1600536807056851]

Methanoltriphenyl(quinoline-2-carboxylato)tin(IV)

H. Wang, H. Yin and Y. Sun

Comment

Organotin esters of carboxylic acids are widely used as biocides, fungicides and homogeneous catalysts. Studies on organotin complexes containing carboxylate ligands with an additional donor atom (*e.g.* N, O or S) that is available for coordinating to the Sn atom have revealed that new structural types may lead to different activities. We have therefore synthesized the title compound, (I), and present its crystal structure here (Fig. 1).

The Sn in (I) atom assumes a trigonal-bipyramidal coordination geometry, formed by three phenyl groups, a monodentate carboxylate group and a coordinated methanol molecule (Table 1). The Sn—O distances in (I) are are close to those in related structures (Ma *et al.*, 2006).

In the crystal of (I), the methanol O—H group makes a bifurcated O—H \cdots (O,N) hydrogen bond (Table 2) to the carboxylate O atom and quinoline N atom in an adjacent molecule (Fig. 2).

Experimental

The reaction was carried out under nitrogen atmosphere. Quinaldic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to a solution of methanol (30 ml) in a Schlenk flask and stirred for 0.5 h. Triphenyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at 313 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (1:1) to yield colourless blocks of (I) (yield 83%; m.p. 446 K). Analysis calculated (%) for $C_{29}H_{25}NO_3Sn$: C 62.85; H 4.55; N 2.53. Found: C 62.79; H 4.63; N 2.62%.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2xU_{eq}(C,O)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. The unit cell of (I). H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines joining the donor and acceptor atoms.

Methanoltriphenyl(quinoline-2-carboxylato)tin(IV)

Crystal data	
[Sn(C ₆ H ₅) ₃ (C ₁₀ H ₆ NO ₂)(CH ₄ O)]	$F_{000} = 1120$
$M_r = 554.19$	$D_{\rm x} = 1.424 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5687 reflections
<i>a</i> = 11.1774 (11) Å	$\theta = 2.3 - 26.9^{\circ}$
<i>b</i> = 14.3964 (12) Å	$\mu = 1.02 \text{ mm}^{-1}$
c = 16.098 (2) Å	T = 298 (2) K
$\beta = 93.572 \ (2)^{\circ}$	Block, colourless
$V = 2585.3 (5) \text{ Å}^3$	$0.54\times0.46\times0.45~mm$
Z = 4	

Data collection

Siemens SMART CCD diffractometer	4551 independent reflections
Radiation source: fine-focus sealed tube	3424 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 13$
$T_{\min} = 0.610, \ T_{\max} = 0.657$	$k = -17 \rightarrow 14$
12574 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_0^2) + (0.0547P)^2 + 0.777P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.002$
4551 reflections	$\Delta \rho_{max} = 0.90 \text{ e } \text{\AA}^{-3}$

307 parameters

$$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$$

Primary atom site location: structure-invariant direct methods Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.62676 (2)	0.142033 (17)	0.775590 (15)	0.03955 (11)
N1	0.7000 (3)	0.4632 (2)	0.94373 (18)	0.0415 (7)
01	0.6090 (2)	0.24000 (17)	0.87443 (16)	0.0510 (7)
O2	0.6980 (3)	0.35405 (18)	0.80596 (17)	0.0559 (8)
O3	0.6358 (2)	0.01729 (19)	0.67387 (16)	0.0503 (7)
Н3	0.6984	-0.0016	0.6559	0.075*
C1	0.6512 (3)	0.3235 (3)	0.8669 (2)	0.0431 (9)
C2	0.6403 (3)	0.3839 (3)	0.9437 (2)	0.0403 (8)
C3	0.5728 (4)	0.3546 (3)	1.0098 (2)	0.0493 (10)
H3A	0.5318	0.2984	1.0070	0.059*
C4	0.5685 (4)	0.4104 (3)	1.0787 (2)	0.0546 (11)
H4	0.5237	0.3925	1.1227	0.066*
C5	0.6322 (4)	0.4953 (3)	1.0825 (2)	0.0504 (10)
C6	0.6972 (3)	0.5194 (3)	1.0128 (2)	0.0425 (9)
C7	0.7603 (4)	0.6051 (3)	1.0128 (3)	0.0577 (11)
H7	0.8037	0.6215	0.9676	0.069*
C8	0.7567 (5)	0.6632 (4)	1.0797 (3)	0.0735 (14)
H8	0.7976	0.7194	1.0795	0.088*
C9	0.6926 (5)	0.6395 (4)	1.1484 (3)	0.0734 (14)
Н9	0.6911	0.6804	1.1931	0.088*
C10	0.6328 (4)	0.5583 (3)	1.1510 (3)	0.0657 (13)
H10	0.5917	0.5432	1.1976	0.079*
C11	0.5416 (3)	0.2169 (3)	0.6736 (2)	0.0453 (9)
C12	0.4221 (4)	0.2014 (3)	0.6513 (3)	0.0710 (13)
H12	0.3772	0.1629	0.6838	0.085*
C13	0.3681 (5)	0.2434 (4)	0.5801 (4)	0.098 (2)
H13	0.2873	0.2331	0.5659	0.118*
C14	0.4336 (6)	0.2999 (4)	0.5309 (3)	0.0874 (17)
H14	0.3980	0.3261	0.4826	0.105*
C15	0.5488 (5)	0.3167 (4)	0.5531 (3)	0.0766 (15)
H15	0.5926	0.3559	0.5206	0.092*
C16	0.6043 (4)	0.2762 (3)	0.6241 (3)	0.0585 (11)
H16	0.6844	0.2892	0.6385	0.070*
C17	0.8172 (3)	0.1293 (3)	0.7900 (2)	0.0421 (9)
C18	0.8935 (3)	0.2035 (3)	0.7736 (2)	0.0506 (10)
H18	0.8609	0.2591	0.7533	0.061*
C19	1.0165 (4)	0.1954 (4)	0.7871 (3)	0.0637 (12)
H19	1.0654	0.2451	0.7747	0.076*
C20	1.0673 (4)	0.1157 (4)	0.8184 (3)	0.0686 (13)
H20	1.1500	0.1117	0.8282	0.082*
C21	0.9949 (4)	0.0407 (4)	0.8356 (3)	0.0689 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H21	1.0291	-0.0139	0.8567	0.083*
C22	0.8711 (4)	0.0474 (3)	0.8210 (3)	0.0572 (11)
H22	0.8233	-0.0034	0.8321	0.069*
C23	0.5185 (4)	0.0463 (3)	0.8402 (2)	0.0472 (10)
C24	0.4280 (4)	0.0796 (4)	0.8874 (3)	0.0631 (12)
H24	0.4131	0.1431	0.8895	0.076*
C25	0.3593 (4)	0.0181 (5)	0.9317 (3)	0.0863 (17)
H25	0.2980	0.0405	0.9627	0.104*
C26	0.3825 (6)	-0.0759 (5)	0.9295 (4)	0.097 (2)
H26	0.3369	-0.1169	0.9590	0.117*
C27	0.4729 (7)	-0.1092 (4)	0.8837 (4)	0.099 (2)
H27	0.4890	-0.1725	0.8830	0.119*
C28	0.5397 (5)	-0.0493 (3)	0.8388 (3)	0.0719 (14)
H28	0.5997	-0.0727	0.8072	0.086*
C29	0.5361 (4)	-0.0265 (3)	0.6299 (3)	0.0616 (12)
H29A	0.4684	-0.0262	0.6638	0.092*
H29B	0.5566	-0.0895	0.6171	0.092*
H29C	0.5163	0.0066	0.5791	0.092*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.04301 (18)	0.03095 (17)	0.04461 (17)	-0.00319 (11)	0.00217 (11)	0.00156 (11)
N1	0.0432 (18)	0.0352 (18)	0.0464 (17)	-0.0011 (14)	0.0049 (14)	-0.0061 (14)
01	0.0639 (18)	0.0323 (15)	0.0577 (16)	-0.0089 (13)	0.0118 (13)	-0.0063 (12)
O2	0.077 (2)	0.0455 (18)	0.0469 (16)	-0.0086 (14)	0.0153 (15)	-0.0054 (13)
O3	0.0460 (16)	0.0493 (17)	0.0560 (16)	-0.0015 (12)	0.0073 (12)	-0.0165 (13)
C1	0.044 (2)	0.036 (2)	0.049 (2)	0.0019 (17)	0.0013 (18)	-0.0047 (18)
C2	0.046 (2)	0.031 (2)	0.044 (2)	0.0039 (16)	0.0027 (17)	0.0016 (16)
C3	0.060 (3)	0.037 (2)	0.052 (2)	-0.0028 (18)	0.0107 (19)	0.0076 (19)
C4	0.065 (3)	0.054 (3)	0.047 (2)	0.004 (2)	0.016 (2)	0.007 (2)
C5	0.061 (3)	0.048 (3)	0.043 (2)	0.011 (2)	0.0046 (19)	-0.0029 (19)
C6	0.044 (2)	0.039 (2)	0.045 (2)	0.0043 (17)	0.0054 (17)	-0.0040 (17)
C7	0.065 (3)	0.047 (3)	0.062 (3)	-0.010 (2)	0.013 (2)	-0.018 (2)
C8	0.075 (3)	0.063 (3)	0.082 (4)	-0.010 (3)	0.003 (3)	-0.023 (3)
C9	0.092 (4)	0.068 (4)	0.061 (3)	0.004 (3)	0.002 (3)	-0.027 (3)
C10	0.083 (3)	0.070 (3)	0.046 (2)	0.009 (3)	0.013 (2)	-0.010 (2)
C11	0.049 (2)	0.036 (2)	0.051 (2)	0.0026 (17)	-0.0009 (18)	-0.0014 (18)
C12	0.054 (3)	0.065 (3)	0.091 (4)	-0.002 (2)	-0.009 (2)	0.011 (3)
C13	0.067 (4)	0.096 (5)	0.126 (5)	0.007 (3)	-0.044 (4)	0.000 (4)
C14	0.112 (5)	0.077 (4)	0.069 (3)	0.018 (4)	-0.031 (3)	0.004 (3)
C15	0.099 (4)	0.076 (4)	0.055 (3)	0.014 (3)	0.007 (3)	0.012 (3)
C16	0.061 (3)	0.055 (3)	0.059 (3)	0.001 (2)	0.002 (2)	0.010 (2)
C17	0.044 (2)	0.044 (2)	0.0381 (19)	0.0039 (17)	0.0000 (16)	-0.0055 (17)
C18	0.047 (2)	0.047 (3)	0.057 (2)	-0.0047 (19)	-0.0012 (18)	-0.005 (2)
C19	0.051 (3)	0.069 (3)	0.070 (3)	-0.009 (2)	0.000 (2)	-0.007 (3)
C20	0.045 (3)	0.090 (4)	0.069 (3)	0.009 (3)	-0.006 (2)	-0.012 (3)
C21	0.067 (3)	0.067 (3)	0.071 (3)	0.024 (3)	-0.008 (2)	-0.001 (3)

C22	0.063 (3)	0.045 (3)	0.063 (3)	0.002 (2)	-0.003 (2)	0.000(2)
C23	0.056 (2)	0.043 (2)	0.042 (2)	-0.0148 (18)	-0.0002 (18)	0.0018 (17)
C24	0.052 (3)	0.069 (3)	0.068 (3)	-0.008 (2)	0.003 (2)	0.010 (2)
C25	0.056 (3)	0.126 (5)	0.078 (3)	-0.019 (3)	0.013 (3)	0.021 (4)
C26	0.124 (5)	0.089 (5)	0.079 (4)	-0.058 (4)	0.010 (4)	0.022 (4)
C27	0.168 (7)	0.058 (3)	0.072 (4)	-0.042 (4)	0.022 (4)	0.006 (3)
C28	0.122 (4)	0.041 (3)	0.055 (3)	-0.016 (3)	0.021 (3)	0.003 (2)
C29	0.055 (3)	0.070 (3)	0.059 (3)	-0.011 (2)	0.000 (2)	-0.020 (2)
Geometric p	oarameters (Å, °)					
Sn1—C17		2.135 (4)	C13	—H13	0.93	00
Sn1—C11		2.138 (4)	C14	—C15	1.33	7 (7)
Sn1—O1		2.145 (3)	C14	—H14	0.93	00
Sn1—C23		2.145 (4)	C15	—C16	1.39	4 (6)
Sn1—O3		2.437 (2)	C15	—H15	0.93	00
N1-C2		1.323 (5)	C16	—H16	0.93	00
N1—C6		1.376 (4)	C17	—C22	1.40	2 (5)
01—C1		1.299 (4)	C17	—C18	1.40	2 (5)
O2—C1		1.222 (4)	C18	—C19	1.38	4 (6)
O3—C29		1.430 (4)	C18	—H18	0.93	00
O3—H3		0.8200	C19	—C20	1.36	2 (7)
C1—C2		1.522 (5)	C19	—H19	0.93	00
C2—C3		1.407 (5)	C20	—C21	1.38	7 (7)
C3—C4		1.372 (6)	C20	—H20	0.93	00
С3—НЗА		0.9300	C21	—C22	1.39	3 (6)
C4—C5		1.414 (6)	C21	—H21	0.93	00
C4—H4		0.9300	C22-	—H22	0.93	00
C5—C6		1.417 (5)	C23	—C24	1.38	7 (6)
C5-C10		1.427 (6)	C23	—C28	1.39	8 (6)
C6—C7		1.421 (5)	C24	—C25	1.39	7 (7)
С7—С8		1.366 (6)	C24	—H24	0.93	00
С7—Н7		0.9300	C25	—C26	1.37	9 (8)
С8—С9		1.397 (7)	C25	—H25	0.93	00
С8—Н8		0.9300	C26	—C27	1.37	3 (9)
C9—C10		1.349 (7)	C26	—H26	0.93	00
С9—Н9		0.9300	C27	—C28	1.37	4 (7)
C10—H10		0.9300	C27	—H27	0.93	00
C11—C12		1.379 (6)	C28	—H28	0.93	00
C11-C16		1.388 (6)	C29	—Н29А	0.96	00
C12—C13		1.399 (7)	C29	—Н29В	0.96	00
С12—Н12		0.9300	C29	—Н29С	0.96	00
C13—C14		1.378 (8)				
C17—Sn1—	C11	121.34 (15)	C12	—С13—Н13	119.	7
C17—Sn1—	01	96.50 (12)	C15		119.	3 (5)
C11—Sn1—	01	100.43 (13)	C15		120.	3
C17—Sn1—	C23	118.77 (15)	C13		120.	3
C11—Sn1—	C23	117.28 (15)	C14		121.	1 (5)
O1—Sn1—C	223	88.95 (13)	C14	—С15—Н15	119.	4

C17—Sn1—O3	85.81 (11)	С16—С15—Н15	119.4
C11—Sn1—O3	83.72 (12)	C11—C16—C15	120.8 (4)
O1—Sn1—O3	173.17 (9)	C11—C16—H16	119.6
C23—Sn1—O3	84.31 (12)	C15—C16—H16	119.6
C2—N1—C6	118.1 (3)	C22-C17-C18	117.1 (4)
C1—O1—Sn1	119.2 (2)	C22-C17-Sn1	121.0 (3)
C29—O3—Sn1	126.5 (2)	C18—C17—Sn1	121.9 (3)
С29—О3—Н3	109.5	C19—C18—C17	121.0 (4)
Sn1—O3—H3	123.7	C19-C18-H18	119.5
O2—C1—O1	125.7 (4)	C17-C18-H18	119.5
O2—C1—C2	120.4 (3)	C20-C19-C18	121.1 (4)
O1—C1—C2	113.9 (3)	С20—С19—Н19	119.4
N1—C2—C3	123.5 (3)	С18—С19—Н19	119.4
N1—C2—C1	115.3 (3)	C19—C20—C21	119.6 (4)
C3—C2—C1	121.2 (3)	С19—С20—Н20	120.2
C4—C3—C2	118.9 (4)	C21—C20—H20	120.2
С4—С3—НЗА	120.6	C20—C21—C22	119.9 (4)
С2—С3—НЗА	120.6	C20-C21-H21	120.1
C3—C4—C5	119.9 (4)	C22—C21—H21	120.1
С3—С4—Н4	120.1	C21—C22—C17	121.3 (4)
С5—С4—Н4	120.1	C21—C22—H22	119.4
C4—C5—C6	117.3 (3)	С17—С22—Н22	119.4
C4—C5—C10	124.1 (4)	C24—C23—C28	118.6 (4)
C6—C5—C10	118.6 (4)	C24—C23—Sn1	119.8 (3)
N1—C6—C5	122.3 (3)	C28—C23—Sn1	121.6 (3)
N1—C6—C7	118.3 (3)	C23—C24—C25	120.3 (5)
C5—C6—C7	119.4 (4)	C23—C24—H24	119.9
C8—C7—C6	119.5 (4)	C25—C24—H24	119.9
С8—С7—Н7	120.2	C26—C25—C24	119.9 (5)
С6—С7—Н7	120.2	C26—C25—H25	120.1
С7—С8—С9	121.1 (5)	C24—C25—H25	120.1
С7—С8—Н8	119.5	C27—C26—C25	120.2 (5)
С9—С8—Н8	119.5	С27—С26—Н26	119.9
C10—C9—C8	121.0 (4)	С25—С26—Н26	119.9
С10—С9—Н9	119.5	C26—C27—C28	120.3 (6)
С8—С9—Н9	119.5	С26—С27—Н27	119.8
C9—C10—C5	120.4 (4)	С28—С27—Н27	119.8
С9—С10—Н10	119.8	C27—C28—C23	120.8 (5)
С5—С10—Н10	119.8	C27—C28—H28	119.6
C12—C11—C16	117.8 (4)	C23—C28—H28	119.6
C12-C11-Sn1	119.7 (3)	O3—C29—H29A	109.5
C16—C11—Sn1	122.3 (3)	O3—C29—H29B	109.5
C11—C12—C13	120.3 (5)	H29A—C29—H29B	109.5
C11—C12—H12	119.9	O3—C29—H29C	109.5
C13—C12—H12	119.9	H29A—C29—H29C	109.5
C14—C13—C12	120.6 (5)	H29B—C29—H29C	109.5
C14—C13—H13	119.7		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3···O2 ⁱ	0.82	2.44	3.000 (4)	127
O3—H3···N1 ⁱ	0.82	2.08	2.827 (4)	151
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+3/2$.				

Fig. 1

